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Abstract: Acer monspessulanum (Montpellier Maple) is an important deciduous tree species native to
the Mediterranean region. It is largely distributed in the southern part of western Europe; however, it
is geographically less present in north Africa and western Asia. The effects of the most significant
environmental variables for its habitat suitability, and climate change, are unclear in terms of the
future changes to its distribution. The objective of the present study was to model the current and
future geographical potential distribution of the Montpellier Maple in the Mediterranean basin and
West Asia using maximum entropy modeling software (MaxEnt). The value of the Area Under
the Curve (AUC) of MaxEnt was used to analyze the model’s performance. More than 5800 well-
distributed presence points, elevation, slope, aspect, topographic wetness index (TWI), natural
vegetation characteristics from MODIS products, and 19 bioclimatic variables were used to conduct
the study. Regarding the projections of the species distribution under climate change, 17 global
climatic models were used under two RCP scenarios (4.5 and 8.5) for the 2040–2060 and the 2060–2080
time periods. The results show that temperature seasonality (40% contribution to the model), elevation
(33.5%), mean annual temperature (6.9%), mean annual precipitation (6.2%), and max temperature
of the warmest month (4.5%) were identified as the primary factors that accounted for the current
distribution of the Montpellier Maple. Under the climate change scenarios, MaxEnt predicts a large
decrease in the species suitability area, with a shift towards the southwestern regions of the species
distribution, especially to the mountainous zones of the Moroccan Atlas. Our results show that
climate largely limits the distribution of the Montpellier Maple in the Mediterranean basin, as its
change in the future is expected to significantly reduce the suitable area by more than 99% from
the historical climate conditions, to reach only 16,166.9 and 9874.7 km2 under the moderate RCP4.5
and extreme RCP8.5 scenarios, respectively, by the end of the 21st century. Our study can provide
a good view of the future changes in the distribution of Montpellier Maple for its protection and
sustainable management.

Keywords: Acer monspessulanum L.; MaxEnt; climate change; modeling; species distribution; Mediter-
ranean

1. Introduction

Ecosystem disturbance, habitat loss, anthropic behaviors, locality degradation, and
climate change are the major factors that affect natural species distribution [1–4]. Envi-
ronmental variables such as climate characteristics, field parameters, and edaphic state
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play a key role in influencing living organisms’ habitat preferences and shifts in occurrence
by triggering the species’ sustainability needs (nutrient availability and stability) [5–11].
Habitats of different plant species are always related to external changes such as biotic
stress and human activities, and abiotic parameters such as climatic conditions [5,8,12–17].

The environmental variables can affect ecosystems and species of the same ecosys-
tem differently [6,10,18,19]. The reaction of plant species to exogenous factors can af-
fect all of their existence due to either inter-specific competition or inadequate overall
conditions [6,13,14,20,21]. Assessing species disturbance in relation to environmental vari-
ables is becoming more and more important, especially with the considerable climate
change effects. To do so, plant species distribution models have been used in different
study areas and fields [22–28]. Species modeling was initially based on the presence–
absence approach [4,29], but regarding the low accuracy and the hard work needed to
obtain accurate data, maximum entropy models such as the MaxEnt model have been
used to measure potential species distribution in relation to environmental variables from
restricted occurrence sampling based only on presence points [30].

The MaxEnt model is usually used to measure and predict rare and endangered
plant species in a restricted niche distribution [3,23,28,31–34]. However, studying common
species distribution and future changes is important in measuring the global effects of
future climate change [15,35,36]. The last IPCC report [37] insisted on assessing the effects
of human activity, and induced climate change will have more severe effects on species
distribution and ecological patterns, especially in the Mediterranean area.

A common native Mediterranean species, the Montpellier Maple [38], was chosen
for this study to measure the current distribution in relation to environmental conditions
and to predict future potential ranges. The choice of the species was based on: (1) the
specificity of the Mediterranean basin as a biodiversity hotspot [16,17,37,39–41]; (2) the
wide distribution range of the species; and (3) the ecological importance of the species.
The Montpellier Maple is a native tree species threatened by a multitude of environmental
variables such as grazing and fires. The species has a shallow distribution in the eastern
part of the Mediterranean and in north Africa, where it is considered a protected species, as
is the case in Tunisia [38,42].

The main objective of this study was to assess the Montpellier Maple’s current potential
distribution, and the effects of future climate scenarios on the species distribution using
the MaxEnt software for maximum entropy modeling. This work will help identify the
environmental conditions that best affect the potential distribution of the Montpellier Maple
and understand how climate change may affect the future potential distribution area of
this native Mediterranean species.

2. Materials and Methods
2.1. Species Description and Study Area

The Acer (Maple) genus is widely distributed in the Northern Hemisphere, containing
around 143 mainly broad-leaf species [43]. Montpellier Maple (Acer monspessulanum L.) is
native to the Mediterranean region and wildly distributed in South Europe, North Africa,
and the Middle East regions. It is a highly adaptative tree with a good capacity for drought
tolerance. The species prefers limestone and calcareous soils with southern slopes from 300
to 1800 m above sea level (m.a.s.l.) [44–47]. The Montpellier Maple (Figure 1) is a deciduous
Mediterranean tree with an average height of 4–5 m, dark brownish bark, three lobbed
coriaceous leaves, and samara fruits. It is a slow-growing tree, generally with multiple
stems [46,48]. The Montpellier Maple can be used for gardening, wood products, and
traditional medicine (as a laxative, for digestive issues, foot pain, and relieving cough) [49].

The study area covers approximately 20 million square kilometers (19.9 million km2)
and encompasses the global distribution habitat of natural observations of the Montpellier
Maple around the Mediterranean basin (north [27◦57′; 55◦38′ N. lat.] and east [−9◦91′;
58◦59′ E. long.]; Figure 2). The chosen area encompasses the Mediterranean and the Middle
Western Asian regions.
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The species presence point data were retrieved from the GBIF database 

(www.gbif.org). The considered species layer is the Montpellier Maple distribution be-
tween 300 and 1800 m of altitude as mentioned on the IUCN Red List website. The 
presence point data set was cleaned considering the above elevation range as a threshold. 
In the case of Tunisia, where the species is considered to be rare, we completed the da-
tabase using points obtained during our fieldwork. Only one observation point was con-

Figure 1. The Montpellier Maple (Acer monspessulanum) in its natural habitat: (A) whole tree;
(B) samara fruits; (C) leaves; and (D) bark aspect. Photos were taken by Hamdi Aouinti in Djebel
Serj, Tunisia.
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Figure 2. Study area: distribution area and presence points of the Montpellier Maple.

2.2. Data

The species presence point data were retrieved from the GBIF database (www.gbif.org).
The considered species layer is the Montpellier Maple distribution between 300 and 1800 m
of altitude as mentioned on the IUCN Red List website. The presence point data set was
cleaned considering the above elevation range as a threshold. In the case of Tunisia, where
the species is considered to be rare, we completed the database using points obtained
during our fieldwork. Only one observation point was considered by pixel to limit the
heterogeneity of the species distribution as recommended by [33,50]. After cleaning, a total
of 5810 presence points were used for running the model (Figure 2). The main presence
of the species is observed in the northern areas, especially in Spain, France, and Italy. The
presence of the species is narrow in Asia and, especially, in the north African regions
where it is only observed in mountainous areas. Climate data were downloaded from the
Worldclim database (www.worldclim.org) with resolution of 30 Arc Seconds. Nineteen
bioclimatic variables [51] were considered to study the current species distribution. Only
nine of these were selected to run the future model simulations. For the future climate
projections, we used the Coupled Model Intercomparison Project—Phase 5 (CMIP5) data

www.gbif.org
www.worldclim.org
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obtained from 17 global climate models (GCMs) and 2 Representative Concentration
Pathway scenarios (moderate RCP 4.5 and extreme RCP 8.5 scenarios). Bioclimatic indexes
(Table 1) were considered instead of monthly climatic data due to their accuracy and the
irregular characteristics of the monthly data [21].

Table 1. Selected environmental parameters used to run the MaxEnt model: source, abbreviations,
and units.

Data Source and Category Variable Description Unit

FAO global Harmonized
World Soil Database

Topographic data

Elevation Elevation m
Slope Slope Degree

Aspect Aspect Degree
TWI Topographic Wetness Index

MODIS
Vegetation data

TC Tree Cover %
NTC Non-Tree Vegetation %
NV Non-Vegetation %

Worldclim
Bioclimatic data

BIO1 Annual Mean Temperature ◦C

BIO2 Mean Diurnal Range (Mean of monthly
(max temp–min temp))

◦C

BIO4 Temperature Seasonality (standard
deviation × 100)

BIO5 Max Temperature of the Warmest Month ◦C

BIO8 Mean Temperature of the Wettest
Quarter

◦C

BIO12 Annual Precipitation mm
BIO14 Precipitation of the Driest Month mm

BIO15 Precipitation Seasonality (Coefficient of
Variation) mm

BIO19 Precipitation of Coldest Quarter mm

The elevation, slopes, and aspect were extracted from the digital elevation model
(DEM) obtained from the FAO global Harmonized World Soil Database v 1.2 [52]. To
take into account the soil water content, we used the topographic wetness index (TWI)
considered as a proxy for the soil moisture conditions [53]. In addition to the topographic
and climatic data, we used three MODIS vegetation data representing the tree and non-tree
vegetation and bare soil percentages. The data pixel dimension used for this study was
30 Arc Seconds (1 km) in order to maximize the number of environmental data sets and, at
the same time, have an accurate resolution to study the potential species distribution.

2.3. Variables Selection

To select the best environmental data sets to run the model on the minimum variable
base, we extracted all used variables’ values to the presence point layer. Population distri-
bution of the species localities by class variables, a correlation matrix between variables,
box plots, Student’s t-test, and descriptive statistics were carried out using the R (x64 4.0.3)
software (R Core Team, Vienna, Austria). For all correlated variables with a correlation
index greater than 0.8, only one variable was left (Figure 3), as it is recommended to use
non-correlated parameters for MaxEnt modeling [54].

In total, 16 variables were selected and classified into three types: 4 topographic vari-
ables, 3 vegetation variables, and 9 bioclimatic variables (Table 1). Low and no significant
correlation between selected topographic and bioclimatic variables were found considering
the presence point of the Montpellier Maple, which implies the use of those two sets of
variables in the modeling of its suitable areas. Moreover, several studies [31,55,56] predict-
ing suitable distribution areas using the MaxEnt model use bioclimatic variables coupled
with topography in model fitting and analysis.
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2.4. MaxEnt Modeling

MaxEnt, or Maximum Entropy Species Distribution Modeling software, is an open-
source computer program that runs through the JAVA language and uses presence-
only records to model the distribution of a species in relation to the environmental
variables [30,54,57]. The model is used worldwide to assess the geographical distribu-
tion of birds, animals, aquatic life, and plants [57]. The software uses only presence records
to model the distribution of a species [22]. It estimates the distribution rate of species based
on decreasing the entropy between the estimated probabilities derived from presence data
and environmental variables [22,54].

2.5. Model Application and Data Analysis

In our MaxEnt models, 70% of presence data were used for the model training while
30% were used as testing data. Jack-knife analyses were performed to estimate the im-
portance of every variable. The AUC values were used to estimate model performance.
AUC values range from 0 to 1: AUC < 0.5 suggests random prediction, an AUC value be-
tween 0.5 and 0.7 indicates poor performance, an AUC value between 0.7 and 0.9 indicates
moderate performance, and AUC > 0.9 indicates high performance [22,29,58]. Potential
species habitat-suitability classes, as explained by Yang et al. [59], were used to display the
potential distribution area and to compare the further distribution ranges of the species
(Table 2).
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Table 2. Classes of habitat suitability used to identify the potential and future species’ probability of
distribution, based on the recommendations of Yi et al. [3].

Habitat Suitability Class Probability of Distribution Combined Classes

Class 1: Unsuitable [0.0–0.2]
Unsuitable classesClass 2: Barely suitable [0.2–0.4]

Class 3: Suitable [0.4–0.6]
Suitable classesClass 4: Highly suitable [0.6–0.7]

Class 5: Extremely suitable [0.7–1.0]

A 20,000-background-point value was used. As background points are considered
like pseudo-presence data, and we aimed to estimate the potential range of the species,
in a range larger than the current distribution area, it is recommended to use a higher
background point than presence point [30]. Future projections were performed using each of
the 17 climatic models, two scenarios, and two projected periods (2040–2060 and 2060–2080)
separately. The averages of the resulting projections and the changes observed between
the MaxEnt simulations were used to perform statistical analysis as advised for climatic
modeling [41]. The resulting maps of the potential distribution were classified into 5 classes
of suitability according to the recommendations of Yi et al. [3]. We used the 0.4 threshold to
identify two classes of unsuitable areas (unsuitable and barely suitable classes) and three
classes of suitable areas (suitable, highly suitable, and extremely suitable classes; Table 2).
For the comparison of the mean values of environmental variables between the different
suitability classes, we extracted all the used variables’ values to the presence point layer. All
the data analysis and statistics were carried out using the R (x64 4.0.3) software.

3. Results
3.1. Model Fitting Results

Our model showed high predictive accuracy with an AUC value above 0.9, indicating
that the model is highly reliable as it is significantly higher than a random prediction. It
performs better than random models in predicting the habitat suitability of the Montpellier
Maple (Figure 4).
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parameters show an excellent performance with a value higher than 0.9).

The model was then used to compare the current distribution to the projected predic-
tions of climate change. Temperature seasonality (BIO4) makes the greatest contribution
to the model, followed by elevation, annual mean temperature (BIO1), annual precipita-
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tion (BIO12), and max temperature of the warmest month (BIO5). These factors have a
cumulative contribution rate of greater than 90% (Figure 5).
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Figure 5. Importance of the considered environmental parameters on the performance of the Max-
Ent model.

Considering the importance of the contribution of each parameter on the species
distribution, the permutation percentage, as explained by Elith et al. [54] and Merow
et al. [30], reveals the amount of data contained in one parameter and not explained by the
other parameters. The MaxEnt model shows that the temperature seasonality and elevation
effects on the modeling of the Montpellier Maple distribution are the most remarkable.
The modeling results showed that elevation explains almost the majority of the species
distribution with a permutation importance of about 44.4%. This can be explained by the
selected threshold of the species distribution elevation, which varies from 300 to 1800 m.
Considering the potential parameters revealed by our model, studying the distribution of
these parameters regarding the field’s current distribution could reveal for us the species’
preferences. The jack-knife test (Figure 6) also demonstrates the importance of each variable
on the training gain of the species distribution modeling.
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3.2. Current Potential Distribution

The current habitats of the Montpellier Maple and its current suitable potential distri-
bution area were predicted for the current bioclimatic conditions (Figures 2 and 7).
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Using the 0.4 threshold (Table 2) to identify the potentially suitable areas, the model
predictions resulted in less than five percent of the studied territory as being suitable areas
(4.8%). These areas are distributed on suitable, highly suitable, and extremely suitable areas
of 478,832, 293,429, and 176,846 km2, respectively. In contrast, the largest predicted area is
classified as unsuitable (91.8%) and barely suitable (3.45%). The suitable areas are mainly
located in the central and eastern Iberian Peninsula, the Pyrenees Mountains, southern
France, central Italy, Sicily, and the edges of the Adriatic and Aegean Seas. For the North
African region, the mainly suitable areas are located in the Rif and Atlas Mountains in
Morocco, between the Tell and the Auras Mountains in Algeria, and in the Dorsal and
Kroumerie Mountains in Tunisia. In the Middle East, the most suitable areas are located in
the northern edges of Turkey, the Lebanon Mountains, and the southwestern edge of the
Caspian Sea. As expected, the main species’ suitable habitats are mountainous areas.

To verify the significance of differences between the different suitability classes of the
current Montpellier Maple potential distribution, a Student’s t-test was run to perform a
means comparison. Our results reveal highly significant differences (p < 0.001) between
the distribution suitability classes, except for the tree cover, non-vegetation, slope, and
longitude, which showed significant (p < 0.01) and non-significant differences. These low
and non-significances indicate the little importance of these parameters in the modeling of
the species distribution, with a cumulative contribution lower than 5%. A matrix comparing
the mean values of environmental parameters of the observed distribution and the modeled
suitability classes was derived to verify the sensitivity of our model in estimating each
parameter (Table 3).

Considering the 0.4 threshold to define the suitable classes, the most influencing
environmental conditions estimated by the MaxEnt model were analyzed. The elevation
range for all classes is between 466.4 and 799.4 m, with a mean of 489.8 m and an optimum
range higher than 764.5 m. For the suitable classes, the elevation was about 776.6 m,
with higher values for the extremely suitable area, whereas the estimated elevation for
the unsuitable classes remains below the observed values. The estimated mean annual
temperature (BIO1) varies between 2.16 and 14.5 ◦C, with an optimal range between 9.7 and
14.5 ◦C and a mean of 12.92 ◦C. Based on the model estimation, the preferred temperature
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seasonality (BIO4) range for all the classes is between 614.6 and 852.6, with an optimum
range between 614.6 and 629.4 and a mean of 621.6 for suitable classes. The temperature
seasonality variability means for suitable classes fit remarkably within the temperature
seasonality range of observed point. For the annual precipitation (BIO12) and the maximum
temperature of the warmest month (BIO5), the model estimates a mean of 459.2 mm and
30.27 ◦C, respectively, with a range between 428.7 and 825.7 mm for BIO 12 and between
26.4 and 30.6 ◦C for BIO5. The optimum values are between 727.6 and 772.3 mm for BIO12
and 26.8 and 27.5 ◦C for BIO5.

Table 3. Matrix of means environmental parameters based on the observed data, the predicted actual
distribution, and the suitability classes.

Mean
Observed
Distribu-

tion

Mean of
Unsuitable

Classes

Mean of
Suitable
Classes

Class 1 Class 2 Class 3 Class 4 Class 5

X 2.9 ± 6.7 19.5 ± 13 4.2 ± 2.8 28.7 ± 19.3 10.2 ± 13.3 7.1 ± 12.6 3.7 ± 9.54 1.7 ± 6.47
Y 42.6 ± 2.5 42 ± 0.6 41.7 ± 0.1 41.5 ± 8.82 42.3 ± 4.62 41.6 ± 3.41 41.7 ± 2.49 41.5 ± 2.72

Elevation 739.3 ± 327 601.1± 190.4 776.6± 19.7 466.4 ± 566 735.7 ± 355 764.5 ± 335 766 ± 310 799.4 ± 350
Slope 14.8 ± 22 5 ± 4 10.7 ± 3.4 2.1 ± 10.2 7.8 ± 17.7 9.7 ± 19.7 7.8 ± 17.7 14.5 ± 21.9

Aspect 180.2 ± 103 177.6 ± 5.1 181.8 ± 2.5 173.9 ± 107 181.1 ± 108 181.6 ± 107 179.3 ± 105 184.3 ± 101
TWI 11.6 ± 3.4 13.7 ± 1.1 12.4 ± 0.8 14.4 ± 2.23 12.9 ± 3.07 12.6 ± 3.27 12.9 ± 3.11 11.5 ± 3.37
TC 28.2 ± 18.9 18.9 ± 11.6 24.7 ± 1.6 10.6 ± 17.2 27 ± 23.4 24.9 ± 21.7 23.1 ± 19 26.2 ± 18.2

NTV 55.6 ± 16 46.4 ± 9.1 58 ± 2 39.9 ± 28.8 52.7 ± 20.1 56 ± 18.3 59.9 ± 16.3 58 ± 15.1
NV 16 ± 11.7 34.8 ± 20.7 17.2 ± 1.7 49.4 ± 35 20.1 ± 16.4 19 ± 13.9 16.9 ± 11 15.7 ± 10.7

BIO1 11.3 ± 1.8 11.9 ± 1.3 11.6 ± 0.1 12.8 ± 6.38 10.9 ± 3.05 11.5 ± 2.27 11.6 ± 1.7 11.7 ± 1.63
BIO2 10 ± 1.6 10.5 ± 0.8 10.1 ± 0.3 11 ± 2.55 9.8 ± 1.81 9.8 ± 1.78 10 ± 1.79 10.4 ± 1.74
BIO4 623 ± 56 751.3± 143.3 621.6 ± 7.4 852.6 ± 224 649.9± 65.1 629.4 ± 55 620.8± 44.9 614.6± 43.9
BIO5 26.8 ± 2.6 28.5 ± 3 27.2 ± 0.3 30.6 ± 7.15 26.3 ± 4.27 26.8 ± 3.47 27.1 ± 2.6 27.4 ± 2.49
BIO8 9.8 ± 3.2 11 ± 3.2 9.5 ± 0.4 13.2 ± 5.49 8.7 ± 4.48 9.1 ± 3.83 9.4 ± 3.18 9.9 ± 2.83

BIO12 778.4 ± 215 627.2± 280.7 741.3± 26.9 428.7 ± 314 825.7 ± 323 772.3 ± 269 723.9 ± 222 727.6 ± 202
BIO14 34.8 ± 18.4 26.5 ± 11.9 30.8 ± 0.4 18.1 ± 19.3 34.9 ± 26.1 30.4 ± 20.3 30.7 ± 17.3 31.3 ± 17.7
BIO15 28.8 ± 13 40.6 ± 7.5 32.3 ± 2.6 45.8 ± 25.2 35.2 ± 19.3 35.1 ± 15.1 31.7 ± 11.8 29.9 ± 12.3
BIO19 205.7± 70.4 180.7± 94.5 209.2± 17.8 113.8± 89.3 247.5 ± 116 229.3 ± 99 202.9± 75.9 195.3 ± 61

3.3. Suitability Distribution in the Future

Shallow projected potential suitable areas for Montpellier Maple are expected to
remain under future climate conditions regardless of the climate scenario and the studied
time periods (Table 4).

Table 4. Matrix of percentages of suitability class distribution and changes in suitability in the actual
distribution classes to the projected distribution classes under the future climatic conditions. The
heading 4.5bi50 is the RCP 4.5 scenario for the 2040–2060 time period; 4.5bi70 is the RCP 4.5 scenario
for the 2060–2080 time period; 8.5bi50 is the RCP 8.5 scenario for the 2040–2060 time period; 8.5bi70 is
the RCP 8.5 scenario for the 2060–2080 time period.

Suitability Class (%) History 45bi50 45bi70 85bi50 85bi70

Class 1 % of the total area 91.80 97.27 ± 0.65 97.41 ± 0.92 97.64 ± 0.81 98.24 ± 1.09
Class 2 % of the total area 3.45 2.65 ± 0.63 2.51 ± 0.88 2.29 ± 0.78 1.71 ± 1.08
Class 3 % of the total area 2.40 0.07 ± 0.03 0.07 ± 0.05 0.06 ± 0.03 0.05 ± 0.04
Class 4 % of the total area 1.47 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
Class 5 % of the total area 0.89 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Remaining Suitable areas (%) 0.09 ± 0.02 0.08 ± 0.02 0.07 ± 0.01 0.05 ± 0.01
Total Suitability loss (%) 99.91 ± 0.64 99.92 ± 0.90 99.93 ± 0.00 99.95 ± 1.08
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Table 4. Cont.

Suitability Class (%) History 45bi50 45bi70 85bi50 85bi70

Changes (%)
Class 1 to Projected class 1 99.91 ± 0.10 99.92 ± 0.05 99.93 ± 0.05 99.85 ± 0.23
Class 1 to Projected class 2 0.09 ± 0.10 0.08 ± 0.05 0.07 ± 0.05 0.14 ± 0.23
Class 1 to Projected class 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Class 1 to Projected class 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Class 1 to Projected class 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Class 2 to Projected class 1 87.39 ± 4.11 87.79 ± 5.29 88.67 ± 5.05 90.13 ± 7.78
Class 2 to Projected class 2 12.43 ± 4.07 12.05 ± 5.21 11.20 ± 4.99 9.70 ± 7.79
Class 2 to Projected class 3 0.18 ± 0.11 0.16 ± 0.14 0.12 ± 0.11 0.17 ± 0.17
Class 2 to Projected class 4 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Class 2 to Projected class 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Class 3 to Projected class 1 66.82 ± 8.79 67.89 ± 12.30 71.43 ± 10.96 78.88 ± 12.4
Class 3 to Projected class 2 32.24 ± 8.61 31.25 ± 11.94 27.87 ± 10.66 20.50 ± 12.38
Class 3 to Projected class 3 0.87 ± 0.41 0.79 ± 0.49 0.64 ± 0.37 0.59 ± 0.47
Class 3 to Projected class 4 0.05 ± 0.05 0.05 ± 0.04 0.05 ± 0.04 0.02 ± 0.03
Class 3 to Projected class 5 0.02 ± 0.05 0.02 ± 0.04 0.01 ± 0.02 0.00 ± 0.01
Class 4 to Projected class 1 43.33 ± 13.36 46.93 ± 18.85 52.04 ± 15.89 68.71 ± 18.56
Class 4 to Projected class 2 55.05 ± 12.87 51.49 ± 18.20 46.74 ± 15.31 30.24 ± 18.57
Class 4 to Projected class 3 1.41 ± 0.54 1.37 ± 1.31 1.04 ± 0.59 0.98 ± 1.1
Class 4 to Projected class 4 0.16 ± 0.11 0.16 ± 0.09 0.13 ± 0.09 0.05 ± 0.07
Class 4 to Projected class 5 0.06 ± 0.09 0.06 ± 0.08 0.05 ± 0.07 0.01 ± 0.02
Class 5 to Projected class 1 33.16 ± 12.85 37.51 ± 20.56 41.85 ± 17.39 63.95 ± 23.28
Class 5 to Projected class 2 63.05 ± 11.81 58.96 ± 19.14 55.21 ± 16.05 34.58 ± 22.44
Class 5 to Projected class 3 2.93 ± 0.88 2.78 ± 1.68 2.31 ± 1.09 1.26 ± 1.01
Class 5 to Projected class 4 0.53 ± 0.24 0.48 ± 0.25 0.40 ± 0.22 0.17 ± 0.20
Class 5 to Projected class 5 0.33 ± 0.25 0.28 ± 0.27 0.23 ± 0.28 0.05 ± 0.10

Loss
Gain

Remaining

Under the moderate RCP4.5 scenario, 99.91% of the currently suitable areas are ex-
pected to disappear, while this percentage is expected to reach 99.95% under the extreme
RCP8.5 scenario by the end of the 21st century (2060–2080 period). The highly and ex-
tremely suitable classes are expected to completely disappear in the future (less than 0.1%).
For example, from the current 176,846 km2 of extremely suitable area for the species distri-
bution, only 850.4 km2 remains considering the RCP 4.5 climatic scenario for the 2040–2060
period, whereas this area will be restricted to only 129.6 km2 under the RCP 8.5 climatic
scenario for the 2060–2080 period. Results in Table 4 show that only some pixels have
gained suitability status by changing into higher suitability classes. These changes are
very minor and are more remarkable for RCP 4.5 than RCP 8.5, and for the 2040–2060
period than the 2060–2080 period. Regarding suitability class changes (Figure 8, Table 4),
migrations from one class to another are predicted to be the same regardless of the climatic
scenario and the chosen period, although some slight differences occur, especially for the
number of unchanged pixels (Table 4); as an example, only 0.05% to 0.33% of the extremely
suitable class will persist under future projections.

Remarkably, the suitability loss will become more effective under the RCP 8.5 scenario
and more for the 2060–2080 period than the 2040–2060 period. The results show that the
majority of suitable classes will change to the unsuitable class, except for some cases where
they change to the barely suitable class. Moreover, Table 4 shows that some suitable classes
will gain some areas from the lower suitability classes, but always at a slow change rate.

As a result of the above-described changes under the projected climate conditions, the
centroids of the different suitability classes are expected to show important spatial shifts
(Figures 8 and 9).
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Figure 8. Changes in each suitability class in the future climatic conditions considering the 2 RCP
scenarios 4.5 (A) and 8.5 (B) and the 2 time periods 2040/2060 (I) and 2060/2070 (II). C1, C2, C3,
C4, and C5 are the suitability classes of the actual distribution. C1P, C2P, C3P, C4P, and C5P are the
suitability classes for future distribution. Changes from classes C3, C4, and C5 to C1P and C2P show
suitability losses.
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Modeling shows a migration of suitable classes of species distribution from the north-
west of the Mediterranean Sea to the Rif and Atlas Mountain chains in Morocco, and a
migration of unsuitable classes to Northeastern Spain. The few extremely suitable areas
expected to remain will migrate from north-eastern Spain to the High Atlas Mountains,
regardless of the projections. The class of highly suitable areas will migrate to a restricted
location between the Middle and the High Atlas Mountains, except for the RCP 8.5 sce-
nario under the 2060–2080 period where it will migrate to the northern edges of the Rif
Mountains. For the suitable class of distribution, it will migrate to an area between the
Rif and the Middle Atlas Mountains. The barely suitable class centroid is predicted to
migrate from north-eastern Italy to north-western Spain and more to the western parts of
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Spain for the RCP 8.5 scenario, while the unsuitable class centroid will persist in the central
Mediterranean area (Figure 8).

4. Discussion
4.1. Current Potential Distribution

The relationship between species and the environment is an important aspect of study-
ing ecological needs and spatial distribution of species [3]. With a suitability range higher
than 0.4 as an optimum, considering the environmental variables and classes observed
in Figure 7, the optimum elevation range is higher than 764.5 m, which is close to the
observed values. Moreover, the estimated optimal slope range between 9.7◦ and 14.5◦ is
highly consistent with the observed conditions, where the majority of trees are observed to
be in a slope range between 0 to 20 degrees. The optimum temperature seasonality (BIO4)
ranges between 614.6 and 629.4, with an observed mean of 623. For the annual precipitation
(BIO12), the optimum values are between 727.6 and 772.3 mm, and the majority of observed
habitats are located in the range of 700 and 900 mm, with a mean of observed precipitation
of about 778 mm. The optimum range of the BIO5 climatic variable is estimated between
26.8 and 27.5 ◦C, which is consistent with the observed range between 26 and 27 ◦C. This
observed accordance between the estimated distribution of the species and the observed
field parameters confirms the quality and the capacity of the model in estimating the distri-
bution of the Montpellier Maple in its natural range. By analyzing the species distribution
compared to field parameters, we found that the majority of tree stands are located in areas
with a maximum of 20% bare soil and with a predominance of shrub lands. Moreover, the
species occurrence decreases with higher tree cover areas. Those analyses can be validated
by the fact that the Montpellier Maple prefers shrublands and forest edges areas with good
light exposure [60]; however, our model predicts that vegetation parameters have a very
minor influence on the distribution of the species, considering that the contribution to the
used model does not exceed 5% of all variables. Our results also show that there is no
significant effect of vegetation parameters on the current predictions of the Montpellier
Maple suitable areas or on the differences between classes of suitability.

4.2. Suitability Distribution in the Future

Under different climate scenarios, the location of the suitable distribution areas for the
species is predicted to shift from south-eastern Europe to the North Africa region, especially
the Rif and Atlas Mountains in Morocco. Regarding the jack-knife test results (Figure 6),
the distribution of the species is revealed to be mainly influenced by the elevation and the
temperature seasonality, with a 73.5% cumulative contribution to the species distribution.
Results in Figure 6 show that temperature seasonality contributes to 40% of the species
distribution and elevation is the most influencing parameter on the species modeling, since
it has a permutation value of 44.4%. Our results showed that the species prefers areas with
moderate to low deviations in temperature, which could explain its future spatial restriction
concerning the potential climate changes of the Mediterranean region [37]. Regarding
elevation range variation within the future climate change scenario, our study revealed
an increase in the optimum range between the current and future conditions. The suitable
areas for species will be higher and more restricted. As an example, the species’ highly
suitable areas will be limited to an elevation range between 1677 and 1784 m under the
RCP4.5 scenario in the 2060–2080 time period (Figure 10), while its predicted optimum mean
elevation for the current conditions ranges around 799.4 ± 350 m. The results of this study
are consistent with those of other studies showing that climate warming causes species to
migrate to higher altitudes [3,13,32,61,62]. Although the species-suitable area will be limited
to higher altitudes, it is observed to be restricted to the elevation threshold of the actual
species range. Those results are in accordance with the work of He et al. [63], who predicted
that suitable areas for alpine vegetation will shift from the lowest and highest elevations and
be limited to a suitable range between 4500 and 5000 m. Moreover, Jiang et al. [56] found
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that the future potential distribution of three Fritillaria species will shift towards higher
altitudes without exceeding the actual optimum elevation range of the species.
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The Montpellier Maple suitable area is predicted to lose more than 99% of its value,
decreasing from 4.76% to 0.05% of the total study area under the RCP 8.5 scenario for
the 2060–2080 time period. According to, Khan et al. [55] future suitable areas of Pinus
gerardiana Wall. will shrink by more than 94% under the RCP 8.5 scenario for the 2060–2080
period. Moreover, Fyllas et al. [64] predicted the loss of suitable areas of several tree species
in Greece under future climate conditions, with the highest suitability loss estimated under
the RCP 8.5 scenario. They predicted that Fagus sylvatica L. will lose more than 93% of its
suitable area in future conditions.

The estimated changes in the potential distribution of the species are more revealed in
the RCP 8.5 scenarios than the RCP 4.5 scenarios and for the 2060–2080 time period than
in the 2040–2060 time period. Those changes have the same tendency as the bioclimatic
parameters’ changes in the Mediterranean region, as revealed by Ducrocq et al. [16]. The
changing climate conditions are revealed as the main conditions causing the restriction
of suitable areas for many species all over the world, and especially in the Mediterranean
area, which is considered a hotspot regarding biodiversity loss [65]. Wei et al. [35] highlight
the effects of climatic conditions on the decrease in suitable areas for the propagation of
caterpillar fungus in China. Highly suitable areas for Quercus libani Oliv. in Turkey are
predicted to decrease from 4.1% to 1.4% of the total study area for the period 2060–2080
under the RCP 8.5 scenario [4]. The analysis of the suitability class migration in space
based on the changes in class centroids showed that the species suitability will be restricted
from the center and eastern Mediterranean region towards the south-western limits of the
considered area (Figure 8). Several studies on species distribution modeling mentioned
shifting of the suitable areas of different species in the future [34,66]. Although the results
show some differences with our study between the future localities of classes’ centroids, a
global trend of shifting in species suitable areas should be underlined. The suitable areas
with a probability of distribution (Class 3, 4, and 5) above 0.4 will migrate in a south-
western direction, while the barely suitable and unsuitable classes’ centroids will move to
the south.

Our study reveals a larger climatically suitable area for the Montpellier Maple than
the observed distribution in the current period, which suggests the possibility of intro-
ducing the species to these areas. The only parameters considered to estimate the future
potential distribution of the Montpellier Maple are those related to climate change. Future
changes in topographic and vegetation variables were not considered, although they may
have a significant effect on the potential distribution area of the species. Therefore, it is
important to consider other parameters, such as anthropic, ecosystemic, geographic, and
geo-morphologic factors, in future work. However, we should also pay more attention to
the credible expression of more variables to improve the prediction accuracy of species
modeling distribution [15,57,67].

5. Conclusions

The MaxEnt model shows a high level of performance with an AUC superior to 0.9.
The most important parameters were the temperature seasonality, elevation, mean annual
temperature, annual precipitation, and maximum temperature of the warmest month.
These factors have a cumulative contribution rate of more than 90%. The model results
showed that the species prefers mountainous areas with sub-humid to humid climates.
The MaxEnt model shows a decline in species suitability in relation to climate change.
Shifting in suitable areas of the species to the Atlas and Rif Mountain chains indicates
the vulnerability of the species to climate change. This work shows the effects of climate
change on the global distribution of the Montpellier Maple habitat, but more investigations
should be undertaken to highlight the effects of other biotic and abiotic factors on future
specie distribution.

Author Contributions: Conceptualization, H.A., H.M. and I.T.; methodology, H.A. and H.M.; soft-
ware, H.A.; validation, H.A., H.M. and I.T.; formal analysis, H.A.; investigation, H.A.; resources,
H.A. and H.M.; data curation, H.A.; writing—original draft preparation, H.A.; writing—review



Forests 2022, 13, 2049 16 of 18

and editing, H.M., I.T., J.B. and A.K.; visualization, H.A.; supervision, H.M., J.B. and A.K.; project
administration, J.B. and A.K.; funding acquisition, I.T., H.M. and J.B. All authors have read and
agreed to the published version of the manuscript.

Funding: Funding support for this research was provided by the project titled “Eating the wild: Im-
proving the value-chain of Mediterranean Wild Food Products (WFP)”—WildFood (Reference Number:
2019-SECTION2-29) and the project: HYDROMED (PID-2019-111332RB-C21). Hassane Moutahir is
supported by the Generalitat Valenciana and the European Social Fund (APOSTD20/2019-7956).

Data Availability Statement: The data used in this research was obtained from free data sources that
are available and free of charge. The sources of the data are cited in the manuscript.

Acknowledgments: This research was supported by the National Research Institute for Rural En-
gineering, Waters, and Forestry-INRGREF. Laboratory of Management and Valorization of Forest
Resources, Tunisia. This research was done based on the cooperation between the National Research
Institute for Rural Engineering, Waters, and Forestry-INRGREF and the University of Alicante. We
thank Santiago Soliveres Codina and Aymen Moghli from the University of Alicante for their help
and support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Milligan, S.R.; Holt, W.V.; Lloyd, R. Impacts of Climate Change and Environmental Factors on Reproduction and Development in

Wildlife. Phil. Trans. R. Soc. B 2009, 364, 3313–3319. [CrossRef]
2. Mott, C.L. Environmental Constraints to the Geographic Expansion of Plant and Animal Species. Nat. Educ. Knowl. 2010, 3, 72.
3. Yi, Y.; Cheng, X.; Yang, Z.-F.; Zhang, S.-H. Maxent Modeling for Predicting the Potential Distribution of Endangered Medicinal

Plant (H. Riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [CrossRef]
4. Çoban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribu-

tion of Quercus Libani Olivier. Sustainability 2020, 12, 2671. [CrossRef]
5. Clark, J.S.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.;

et al. The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States. Glob. Chang. Biol.
2016, 22, 2329–2352. [CrossRef]

6. Gazol, A.; Camarero, J.J.; Vicente-Serrano, S.M.; Sánchez-Salguero, R.; Gutiérrez, E.; de Luis, M.; Sangüesa-Barreda, G.; Novak, K.;
Rozas, V.; Tíscar, P.A.; et al. Forest Resilience to Drought Varies across Biomes. Glob. Chang. Biol. 2018, 24, 2143–2158. [CrossRef]

7. Okin, G.S.; Dong, C.; Willis, K.S.; Gillespie, T.W.; MacDonald, G.M. The Impact of Drought on Native Southern California
Vegetation: Remote Sensing Analysis Using MODIS-Derived Time Series. J. Geophys. Res. Biogeosciences 2018, 123, 1927–1939.
[CrossRef]

8. Rodriguez-Caballero, E.; Belnap, J.; Büdel, B.; Crutzen, P.J.; Andreae, M.O.; Pöschl, U.; Weber, B. Dryland Photoautotrophic Soil
Surface Communities Endangered by Global Change. Nat. Geosci. 2018, 11, 185–189. [CrossRef]

9. Wieneke, S.; Burkart, A.; Cendrero-Mateo, M.P.; Julitta, T.; Rossini, M.; Schickling, A.; Schmidt, M.; Rascher, U. Linking
Photosynthesis and Sun-Induced Fluorescence at Sub-Daily to Seasonal Scales. Remote Sens. Environ. 2018, 219, 247–258.
[CrossRef]

10. Guimarães, P.R. The Structure of Ecological Networks Across Levels of Organization. Annu. Rev. Ecol. Evol. Syst. 2020, 51,
433–460. [CrossRef]

11. Bhat, J.A.; Kumar, M.; Pala, N.A.; Shah, S.; Dayal, S.; Gunathilake, C.; Negi, A.K. Influence of Altitude on the Distribution Pattern
of Flora in a Protected Area of Western Himalaya. Acta Ecol. Sin. 2020, 40, 30–43. [CrossRef]

12. Bazzaz, F.A. The Response of Natural Ecosystems to the Rising Global CO2 Levels. Annu. Rev. Ecol. Syst. 1990, 21, 167–196.
[CrossRef]

13. Malcolm, J.R.; Markham, A.; Neilson, R.P.; Garaci, M. Estimated Migration Rates under Scenarios of Global Climate Change. J.
Biogeogr. 2002, 29, 835–849. [CrossRef]

14. Malcolm, J.R.; Liu, C.; Neilson, R.P.; Hansen, L.; Hannah, L. Global Warming and Extinctions of Endemic Species from Biodiversity
Hotspots. Conserv. Biol. 2006, 20, 538–548. [CrossRef]

15. Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in a Changing
Climate. Science 2011, 332, 53–58. [CrossRef]

16. Ducrocq, V.; Drobinski, P.; Lambert, D.; Molinié, G.; Llasat, C. Preface: Forecast and Projection in Climate Scenario of Mediter-
ranean Intense Events: Uncertainties and Propagation on Environment (the MEDUP Project). Nat. Hazards Earth Syst. Sci. 2013,
13, 3043–3047. [CrossRef]

17. Kim, G.-U.; Seo, K.-H.; Chen, D. Climate Change over the Mediterranean and Current Destruction of Marine Ecosystem. Sci. Rep.
2019, 9, 18813. [CrossRef]

http://doi.org/10.1098/rstb.2009.0175
http://doi.org/10.1016/j.ecoleng.2016.04.010
http://doi.org/10.3390/su12072671
http://doi.org/10.1111/gcb.13160
http://doi.org/10.1111/gcb.14082
http://doi.org/10.1029/2018JG004485
http://doi.org/10.1038/s41561-018-0072-1
http://doi.org/10.1016/j.rse.2018.10.019
http://doi.org/10.1146/annurev-ecolsys-012220-120819
http://doi.org/10.1016/j.chnaes.2018.10.006
http://doi.org/10.1146/annurev.es.21.110190.001123
http://doi.org/10.1046/j.1365-2699.2002.00702.x
http://doi.org/10.1111/j.1523-1739.2006.00364.x
http://doi.org/10.1126/science.1200303
http://doi.org/10.5194/nhess-13-3043-2013
http://doi.org/10.1038/s41598-019-55303-7


Forests 2022, 13, 2049 17 of 18

18. Angert, A.L.; Bontrager, M.G.; Ågren, J. What Do We Really Know About Adaptation at Range Edges? Annu. Rev. Ecol. Evol. Syst.
2020, 51, 341–361. [CrossRef]

19. Martínez-López, J.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Voigt, B.; Athanasiadis, I.; Pascual, M.; Willcock, S.; Villa, F. Towards
Globally Customizable Ecosystem Service Models. Sci. Total Environ. 2019, 650, 2325–2336. [CrossRef]

20. Vilà-Cabrera, A.; Premoli, A.C.; Jump, A.S. Refining Predictions of Population Decline at Species’ Rear Edges. Glob. Chang. Biol.
2019, 25, 1549–1560. [CrossRef]

21. Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; Kleunen, M.;
Naya, D.E.; et al. The Effects of Phenotypic Plasticity and Local Adaptation on Forecasts of Species Range Shifts under Climate
Change. Ecol. Lett. 2014, 17, 1351–1364. [CrossRef] [PubMed]

22. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006,
190, 231–259. [CrossRef]

23. Kumar, S.; Stohlgren, T.J. Maxent Modeling for Predicting Suitable Habitat for Threatened and Endangered Tree Canacomyrica
Monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98.

24. Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G.
Current and Future Predicting Potential Areas of Oxytenanthera Abyssinica (A. Richard) Using MaxEnt Model under Climate
Change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [CrossRef]

25. Hemati, T.; Pourebrahim, S.; Monavari, M.; Baghvand, A. Species-Specific Nature Conservation Prioritization (a Combination of
MaxEnt, Co$ting Nature and DINAMICA EGO Modeling Approaches). Ecol. Model. 2020, 429, 109093. [CrossRef]

26. Mahatara, D.; Acharya, A.; Dhakal, B.; Sharma, D.; Ulak, S.; Paudel, P. Maxent Modelling for Habitat Suitability of Vulnerable
Tree Dalbergia Latifolia in Nepal. Silva Fennica 2021, 55. [CrossRef]

27. Spatial Modeling in Forest Resources Management; Shit, P.K.; Pourghasemi, H.R.; Das, P.; Bhunia, G.S. (Eds.) Environmental
Science and Engineering; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-56541-1.

28. Wei, Y.; Zhang, L.; Wang, J.; Wang, W.; Niyati, N.; Guo, Y.; Wang, X. Chinese Caterpillar Fungus (Ophiocordyceps Sinensis) in
China: Current Distribution, Trading, and Futures under Climate Change and Overexploitation. Sci. Total Environ. 2021, 755,
142548. [CrossRef]

29. Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models.
Environ. Conserv. 1997, 24, 38–49. [CrossRef]

30. Merow, C.; Smith, M.J.; Silander, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why
Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [CrossRef]

31. Qin, A.; Liu, B.; Guo, Q.; Bussmann, R.W.; Ma, F.; Jian, Z.; Xu, G.; Pei, S. Maxent Modeling for Predicting Impacts of Climate
Change on the Potential Distribution of Thuja Sutchuenensis Franch., an Extremely Endangered Conifer from Southwestern
China. Glob. Ecol. Conserv. 2017, 10, 139–146. [CrossRef]

32. Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt Modeling to Predict the Potential Distribution of the Endemic Plant
Rosa Arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [CrossRef]

33. Zhang, K.; Sun, L.; Tao, J. Impact of Climate Change on the Distribution of Euscaphis Japonica (Staphyleaceae) Trees. Forests 2020,
11, 525. [CrossRef]

34. Du, Z.; He, Y.; Wang, H.; Wang, C.; Duan, Y. Potential Geographical Distribution and Habitat Shift of the Genus Ammopiptanthus
in China under Current and Future Climate Change Based on the MaxEnt Model. J. Arid Environ. 2021, 184, 104328. [CrossRef]

35. Wei, B.; Wang, R.; Hou, K.; Wang, X.; Wu, W. Predicting the Current and Future Cultivation Regions of Carthamus Tinctorius L.
Using MaxEnt Model under Climate Change in China. Glob. Ecol. Conserv. 2018, 16, e00477. [CrossRef]

36. Willcock, S.; Hooftman, D.A.P.; Balbi, S.; Blanchard, R.; Dawson, T.P.; O’Farrell, P.J.; Hickler, T.; Hudson, M.D.; Lindeskog, M.;
Martinez-Lopez, J.; et al. A Continental-Scale Validation of Ecosystem Service Models. Ecosystems 2019, 22, 1902–1917. [CrossRef]

37. IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021.

38. Crowley, D.; Rivers, M.C.; Barstow, M. 2018. Acer Monspessulanum (Errata Version Published in 2018). The IUCN Red List of
Threatened Species: 2018, e.T193835A135202094. Available online: https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T19383
5A124731677.en (accessed on 10 January 2021).

39. Lionello, P.; Planton, S.; Rodo, X. Preface: Trends and Climate Change in the Mediterranean Region. Glob. Planet. Chang. 2008, 63,
87–89. [CrossRef]

40. Lionello, P.; Abrantes, F.; Gacic, M.; Planton, S.; Trigo, R.; Ulbrich, U. The Climate of the Mediterranean Region: Research Progress
and Climate Change Impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [CrossRef]

41. Planton, S.; Driouech, F.; Rhaz, K.E.; Lionello, P. Sub-Chapter 1.2.2. The Climate of the Mediterranean Regions in the Future
Climate Projections. In The Mediterranean Region under Climate Change, IRD ed.; Recherche pour le Développement or IRD:
Marseille, France, 2016; pp. 83–91.

42. DGF Filière Des Semences Forestières et Pastorales En Tunisie. Projet de Gestion Intégrée des Forêts (Phase II); DGF: Tunis,
Tunisia, 2015.

43. Van Gelderen, D.M.; Oterdoom, H.J.; de Jong, P.C. Maples of the World; Timber Press: Portland, OR, USA, 1995; Volume 32.
44. D’Ambrosio, C. La Biosistematica Molecolare Del Genere Acer: Applicazione Del Método Barcoding Alle Specie Italiane. Ph.D.

Thesis, Università degli Studi della Tuscia di Viterbo, Viterbo, Italy, 2009.

http://doi.org/10.1146/annurev-ecolsys-012120-091002
http://doi.org/10.1016/j.scitotenv.2018.09.371
http://doi.org/10.1111/gcb.14597
http://doi.org/10.1111/ele.12348
http://www.ncbi.nlm.nih.gov/pubmed/25205436
http://doi.org/10.1016/j.ecolmodel.2005.03.026
http://doi.org/10.1186/s13717-019-0210-8
http://doi.org/10.1016/j.ecolmodel.2020.109093
http://doi.org/10.14214/sf.10441
http://doi.org/10.1016/j.scitotenv.2020.142548
http://doi.org/10.1017/S0376892997000088
http://doi.org/10.1111/j.1600-0587.2013.07872.x
http://doi.org/10.1016/j.gecco.2017.02.004
http://doi.org/10.1016/j.ecoinf.2019.01.003
http://doi.org/10.3390/f11050525
http://doi.org/10.1016/j.jaridenv.2020.104328
http://doi.org/10.1016/j.gecco.2018.e00477
http://doi.org/10.1007/s10021-019-00380-y
https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T193835A124731677.en
https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T193835A124731677.en
http://doi.org/10.1016/j.gloplacha.2008.06.004
http://doi.org/10.1007/s10113-014-0666-0


Forests 2022, 13, 2049 18 of 18

45. Coombes, A.J.; Debreczy, Z. Arbres:L’encyclopedie Des 600 Plus Beaux Arbres Du Monde; Flammarion: Paris, France, 2011.
46. Zare, A. A Study of Different Treatment Effect on Seed Germination Characteristics and Seedling Survival Montpellier Maple

(Acer Menspessolanum Subsp. Turcomanicum Rech. F.). Indian J. Fundam. Appl. Life Sci. 2014, 4, 455–464.
47. Wieczorek, K.; Kanturski, M.; Junkiert, Ł.; Bugaj-Nawrocka, A. A Comparative Morphometric Study of the Genus Drepanosi-

phoniella Davatchi, Hille Ris Lambers and Remaudière (Hemiptera: Aphididae: Drepanosiphinae). Zool. Anz. A J. Comp. Zool.
2015, 257, 39–53. [CrossRef]

48. Pottier-Alapetite, G. Flore De La Tunisie: Angiospermes-Dicotyledones: * Apetales-Dialypetales; Le Ministère de l’Enseignement
Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture: Tunis, Tunisia, 1979.

49. Bi, W.; Gao, Y.; Shen, J.; He, C.; Liu, H.; Peng, Y.; Zhang, C.; Xiao, P. Traditional Uses, Phytochemistry, and Pharmacology of the
Genus Acer (Maple): A Review. J. Ethnopharmacol. 2016, 189, 31–60. [CrossRef]

50. Zhang, K.; Zhang, Y.; Jia, D.; Tao, J. Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management.
Sustainability 2020, 12, 4132. [CrossRef]

51. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017,
37, 4302–4315. [CrossRef]

52. FAO. Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy, 2009.
53. Kopecký, M.; Macek, M.; Wild, J. Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant

Species Composition. Sci. Total Environ. 2021, 757, 143785. [CrossRef]
54. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers.

Distrib. 2011, 17, 43–57. [CrossRef]
55. Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt Modelling and Impact of Climate

Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests
2022, 13, 715. [CrossRef]

56. Jiang, R.; Zou, M.; Qin, Y.; Tan, G.; Huang, S.; Quan, H.; Zhou, J.; Liao, H. Modeling of the potential geographical distribution of
three Fritillaria species under climate change. Front. Plant Sci. 2021, 12, 749838. [CrossRef]

57. Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation.
Ecography 2008, 31, 161–175. [CrossRef]

58. Swets, J. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [CrossRef]
59. Yang, X.-Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent Modeling for Predicting the Potential Distribution of Medicinal

Plant, Justicia Adhatoda L. in Lesser Himalayan Foothills. Ecol. Eng. 2013, 51, 83–87. [CrossRef]
60. Meddour, R.; Meddour-Sahar, O.; Derridj, A.; Géhu, J.-M. Synopsis Commenté Des Groupements Végétaux Forestiers et

Préforestiers de La Kabylie Djurdjuréenne (Algérie). Rev. For. Française 2010, 62, 295–308. [CrossRef]
61. Klausmeyer, K.R.; Shaw, M.R. Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in

Mediterranean Ecosystems Worldwide. PLoS ONE 2009, 4, e6392. [CrossRef] [PubMed]
62. Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of

Cunninghamia Lanceolata in China. Forests 2020, 11, 302. [CrossRef]
63. He, Y.; Xiong, Q.; Yu, L.; Yan, W.; Qu, X. Impact of Climate Change on Potential Distribution Patterns of Alpine Vegetation in the

Hengduan Mountains Region, China. Mt. Res. Dev. 2020, 40, R48–R54. Available online: https://www.jstor.org/stable/27003481
(accessed on 14 February 2021). [CrossRef]

64. Fyllas, N.M.; Koufaki, T.; Sazeides, C.I.; Spyroglou, G.; Theodorou, K. Potential Impacts of Climate Change on the Habitat
Suitability of the Dominant Tree Species in Greece. Plants 2022, 11, 1616. [CrossRef] [PubMed]

65. Cuttelod, A.; Garcia, N.; Malak, D.A.; Temple, H.J.; Katarya, V. The Mediterranean: A Biodiversity Hotspot under Threat. In
Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2009; Volume 89.

66. Portilla Cabrera, C.V.; Selvaraj, J.J. Geographic Shifts in the Bioclimatic Suitability for Aedes Aegypti under Climate Change
Scenarios in Colombia. Heliyon 2020, 6, e03101. [CrossRef] [PubMed]

67. Sillero, N.; Barbosa, A.M. Common Mistakes in Ecological Niche Models. Int. J. Geogr. Inf. Sci. 2021, 35, 213–226. [CrossRef]

http://doi.org/10.1016/j.jcz.2015.04.002
http://doi.org/10.1016/j.jep.2016.04.021
http://doi.org/10.3390/su12104132
http://doi.org/10.1002/joc.5086
http://doi.org/10.1016/j.scitotenv.2020.143785
http://doi.org/10.1111/j.1472-4642.2010.00725.x
http://doi.org/10.3390/f13050715
http://doi.org/10.3389/fpls.2021.749838
http://doi.org/10.1111/j.0906-7590.2008.5203.x
http://doi.org/10.1126/science.3287615
http://doi.org/10.1016/j.ecoleng.2012.12.004
http://doi.org/10.4267/2042/38944
http://doi.org/10.1371/journal.pone.0006392
http://www.ncbi.nlm.nih.gov/pubmed/19641600
http://doi.org/10.3390/f11030302
https://www.jstor.org/stable/27003481
http://doi.org/10.1659/MRD-JOURNAL-D-20-00010.1
http://doi.org/10.3390/plants11121616
http://www.ncbi.nlm.nih.gov/pubmed/35736767
http://doi.org/10.1016/j.heliyon.2019.e03101
http://www.ncbi.nlm.nih.gov/pubmed/31909268
http://doi.org/10.1080/13658816.2020.1798968

	Introduction 
	Materials and Methods 
	Species Description and Study Area 
	Data 
	Variables Selection 
	MaxEnt Modeling 
	Model Application and Data Analysis 

	Results 
	Model Fitting Results 
	Current Potential Distribution 
	Suitability Distribution in the Future 

	Discussion 
	Current Potential Distribution 
	Suitability Distribution in the Future 

	Conclusions 
	References

